第18章:數學模型的限制與主動溝通 (精簡摘要)

1.0 核心概念:模型效用與不完美性

所有模型都是「錯的」,但有些是「有用」的。模型是現實的簡化,其價值在於結果「足夠接近現實」以提供決策依據。專業人員必須培養批判性思維,質疑模型假設與現實的一致性。

1.1 模型限制的兩大支柱:適用範圍與基本假設

  1. 模型的適用範圍:模型設計用來解決特定問題的邊界。
  2. 模型與輸入參數的基本假設:模型建立時所依賴的前提條件。

2.0 實務陷阱:特定模型限制的系統性解析

2.1 均勻混合室 (Well-Mixed Room, WMR) 模型

WMR模型假設室內空氣「確實」均勻混合,或污染物在多點釋放。
限制與評估應用:現實中可能存在通風短路導致濃度差異。

2.2 錯誤的輸入參數

  • 忽略物體佔用體積,及假設補充空氣為零濃度

2.3 紊流擴散 (Turbulent Eddy Diffusion) 模型

  • 限制與評估應用:此模型不適用於評估非常靠近污染源(如小於10公分)位置的濃度。這是模型數學結構本身的限制,需了解其應用邊界。

2.4 近場/遠場 (Near-Field/Far-Field, NF/FF) 模型

用於估算勞工呼吸帶附近化學品的室內濃度梯度,假設污染物在近場(NF)和遠場(FF)內部相對均勻混合。

  • 限制與評估應用:關鍵參數是β(兩場之間的區間氣流交換率)。
  • 實務警訊:若增加模型複雜度所依賴的假設被現實情況嚴重違反(如強力風扇導致全室高度混合),NF/FF模型的準確性可能「低於均勻混合室模型」。

3.0 模型結果的主動與策略性溝通

3.1 利害關係人識別與分析框架
3.2 針對不同對象的客製化溝通策略

  • 企業高層領導:使用商業語言,強調投資回報率 (ROI)、商譽、法律責任。報告應包含背景、假設、限制、改善機會及ROI分析的執行摘要。
  • 員工與公眾:直截了當、易於理解的語言,開放雙向溝通。嚴守倫理,不歪曲風險概況。強調已有的防護措施,證明風險已被控制在「合理可行之盡低原則」(ALARP)水平。
  • 政府監管機構:提供完整的原始數據、詳細的方法學、假設與邊界條件,證明合規性。
  • 學術與研究機構:採用更科學的方式,詳述參數、假設、簡化過程,開放同行審查。

3.3 進階視覺化:使用貝氏分析工具直觀溝通風險

  • Expostats 軟體:採用貝氏決策分析(BDA)詮釋暴露數據,整合專業判斷與數據,即使樣本數小也能計算決策機率。

4.0 綜合與專業應用

4.1 模型限制指導溝通
4.2 將原則融入實務
建模並非取代採樣,而是作為風險管理計畫的關鍵、前瞻性組成部分。

  • 數學模型的優勢:時間效率高、成本效益好,能提供「早期及時的潛在過度暴露風險警報」,支持「回溯性暴露評估」,並指導採樣策略。

5.0 結論

  • 數學模型是工業衛生不可或缺的工具,但其有效性高度依賴於使用者對其「適用範圍」與「基本假設」的深刻理解。必須警惕因誤用模型(如WMR、紊流擴散或NF/FF)而導致的錯誤決策。
  • 與建立一個好模型同樣重要的是,知道如何「主動地」與不同利害關係人溝通模型結果。溝通策略必須根據受眾客製化,並利用視覺化工具將複雜數據轉化為直觀風險資訊。最終目標是增進人們對模型的理解與信任,擴大其應用機會。
  • 透過穩健的建模結果與主動溝通,即使在暴露測量數據有限的情況下,也能為工程控制提出有效對策,降低危害暴露。本章為工業衛生建模的初學者提供了實用參考,並為模型結果的應用、詮釋與溝通帶來新啟示。